Солнечная батарея не может служить прямым источником электричества, как генератор. В комплекс системы солнечной генерации электроэнергии входят:
- солнечная батарея;
- контроллер уровня зарядки аккумуляторных батарей (АКБ);
- инвертор.
Это накладывает определенные условия при расчете соотношений мощности батареи с емкостью и токов зарядки АКБ и с режимом работы и мощности потребителей. Также, необходимо принимать во внимание, на что ориентирован комплекс.
Это может быть (без элементов управления и преобразования):
- элемент автономного энергоснабжения (генератор+батарея —>потребитель);
- источник электроэнергии для одного или группы потребителей (батарея —>потребитель). Причем, потребитель может быть низковольтным.
Расчет солнечной батареи, по своему содержанию, относится к многофакторным расчетам, т.е. изменение одного показателя в цепочке приводит или к изменению характеристик всей системы, или к введению в систему новых элементов. К примеру, две панели, но с разной степенью освещенности (на крыше и на фронтоне) нельзя рассматривать как одну (нужны два контроллера зарядки АКБ), либо ставить отсекающий диод.
За основу для расчета принимается цель установки солнечной батареи и фактическое наличие элементов комплекса с сопрягаемыми характеристиками по напряжению и току. На практике, это означает расчет в направлении от потребителя или от батареи. В большинстве случаев, за основу принимают мощность потребителя и время бесперебойного энергообеспечения в период отсутствия солнечного света или иного источника энергии для подзарядки АКБ.
Физические величины и названия характеристик элементов комплекса солнечной генерации:
- I — ток (А);
- U — напряжение (В);
- Pа — активная мощность (Вт);
- W — расход электроэнергии (кВтч)
- Ca — емкость аккумулятора (А*ч). Величина постоянная до момента достижения АКБ допустимого уровня разрядки;
- T — время освещенности панели (час). Среднемесячное количество часов для конкретного региона, которое зависит от времени года и широты местности.
- K — число дней. Учитывает работоспособность системы без солнечного освещения.
Пример расчета
Исходные данные (произвольно):
- Телевизор мощностью Pа = 100 Вт работает t = 5 часов в сутки и 7 дней в неделю.
- Осветительные приборы общей мощностью Pа = 1000 Вт, t = 6 часов в сутки и 7 дней в неделю.
- Освещенность солнечной панели: T — 5,5 час в сутки (широта Москвы, лето).
- КПД инвертора — 0,9.
- Характеристика одной аккумуляторной батареи: Са — 225 А/ч, Uа — 12 В.
- Уровень разрядки АКБ — 0,7.
При суммарной мощности приборов 1100 Вт среднесуточный расход энергии составит Wн = 45,500 кВтч в неделю или Wс= 6,500 кВтч в сутки. Для точного расчета требуется учитывать вероятность одновременного использования приборов, пиковые и реактивные нагрузки или распределение нагрузки в течение суток.
По суммарной мощности потребителей 1,1 кВт выбираем инвертор мощностью 2 кВт (с перспективой роста и компенсации неучтенных нагрузок). Входное напряжение инвертора Uинв— 24 В.
Полная суточная токовая нагрузка на инвертор в А*ч с учетом КПД инвертора: Wc/КПД*Uинв = 6500/0,9*24 = 297,91 А*ч.
Эта величина важна для определения количества АКБ, тока подзарядки и, в конечном счете, надежности системы.
В нашем случае:
- Токовая нагрузка увеличивается в два раза для обеспечения двухдневного энергоснабжения.
- Учитываем допустимую глубину разрядки батареи 0,7.
- Получаем суммарную токовую нагрузку — 297,91*2*0,7 = 851,19 А*ч.
С учетом характеристики одной аккумуляторной батареи Са = 225 А*ч получаем число блоков батарей на напряжение 24 В (напряжение инвертора) 851,19/225 = 3,78. Округляем до 4-х. Для того чтобы получить Uа (12 В) на одну батарею соединяем в одном блоке две батареи последовательно. Итого получается 4 параллельно соединенных блока, состоящих из двух батарей каждый. Всего 8 аккумуляторов.
В дополнение к нагрузке потребителя необходимо добавить нагрузку, учитывающую подзарядку батарей. Она составляет 10% суммарной мощности аккумуляторного модуля (8*225*12) = 21600 Втч*10% = 216 Втч. Суммарная среднесуточное потребление будет составлять — 6500+216 = 6716 Втч.
Для обеспечения системы энергией солнечная батарея должна за время освещенности (T =5,5 часов) выработать среднесуточную потребность в электроэнергии (6716 Втч). Следовательно, блок из солнечных модулей (с выходным напряжением 24 В и мощностью 200 Вт каждый) должен состоять из 6 модулей (6716/5,5*200 = 6,10).
Вывод
Для энергообеспечения потребителя с активной мощностью 1100 Вт требуется 6 модулей солнечных элементов с выходными параметрами: Wmax=200 Вт и Uраб=24 В.
- солнечная батарея;
- контроллер уровня зарядки аккумуляторных батарей (АКБ);
- инвертор.
Это накладывает определенные условия при расчете соотношений мощности батареи с емкостью и токов зарядки АКБ и с режимом работы и мощности потребителей. Также, необходимо принимать во внимание, на что ориентирован комплекс.
Это может быть (без элементов управления и преобразования):
- элемент автономного энергоснабжения (генератор+батарея —>потребитель);
- источник электроэнергии для одного или группы потребителей (батарея —>потребитель). Причем, потребитель может быть низковольтным.
Расчет солнечной батареи, по своему содержанию, относится к многофакторным расчетам, т.е. изменение одного показателя в цепочке приводит или к изменению характеристик всей системы, или к введению в систему новых элементов. К примеру, две панели, но с разной степенью освещенности (на крыше и на фронтоне) нельзя рассматривать как одну (нужны два контроллера зарядки АКБ), либо ставить отсекающий диод.
За основу для расчета принимается цель установки солнечной батареи и фактическое наличие элементов комплекса с сопрягаемыми характеристиками по напряжению и току. На практике, это означает расчет в направлении от потребителя или от батареи. В большинстве случаев, за основу принимают мощность потребителя и время бесперебойного энергообеспечения в период отсутствия солнечного света или иного источника энергии для подзарядки АКБ.
Физические величины и названия характеристик элементов комплекса солнечной генерации:
- I — ток (А);
- U — напряжение (В);
- Pа — активная мощность (Вт);
- W — расход электроэнергии (кВтч)
- Ca — емкость аккумулятора (А*ч). Величина постоянная до момента достижения АКБ допустимого уровня разрядки;
- T — время освещенности панели (час). Среднемесячное количество часов для конкретного региона, которое зависит от времени года и широты местности.
- K — число дней. Учитывает работоспособность системы без солнечного освещения.
Методика расчета солнечной батареи
Предлагаемая методика дает общее направление порядка расчета элементов комплекса с солнечной батареей на участке солнечная батарея - АКБ - инвертор без учета некоторых параметров. Расчет ведется из условия среднемесячного потребления и запаса надежности в два дня без активного солнца (K).Пример расчета
Исходные данные (произвольно):
- Телевизор мощностью Pа = 100 Вт работает t = 5 часов в сутки и 7 дней в неделю.
- Осветительные приборы общей мощностью Pа = 1000 Вт, t = 6 часов в сутки и 7 дней в неделю.
- Освещенность солнечной панели: T — 5,5 час в сутки (широта Москвы, лето).
- КПД инвертора — 0,9.
- Характеристика одной аккумуляторной батареи: Са — 225 А/ч, Uа — 12 В.
- Уровень разрядки АКБ — 0,7.
При суммарной мощности приборов 1100 Вт среднесуточный расход энергии составит Wн = 45,500 кВтч в неделю или Wс= 6,500 кВтч в сутки. Для точного расчета требуется учитывать вероятность одновременного использования приборов, пиковые и реактивные нагрузки или распределение нагрузки в течение суток.
По суммарной мощности потребителей 1,1 кВт выбираем инвертор мощностью 2 кВт (с перспективой роста и компенсации неучтенных нагрузок). Входное напряжение инвертора Uинв— 24 В.
Полная суточная токовая нагрузка на инвертор в А*ч с учетом КПД инвертора: Wc/КПД*Uинв = 6500/0,9*24 = 297,91 А*ч.
Эта величина важна для определения количества АКБ, тока подзарядки и, в конечном счете, надежности системы.
В нашем случае:
- Токовая нагрузка увеличивается в два раза для обеспечения двухдневного энергоснабжения.
- Учитываем допустимую глубину разрядки батареи 0,7.
- Получаем суммарную токовую нагрузку — 297,91*2*0,7 = 851,19 А*ч.
С учетом характеристики одной аккумуляторной батареи Са = 225 А*ч получаем число блоков батарей на напряжение 24 В (напряжение инвертора) 851,19/225 = 3,78. Округляем до 4-х. Для того чтобы получить Uа (12 В) на одну батарею соединяем в одном блоке две батареи последовательно. Итого получается 4 параллельно соединенных блока, состоящих из двух батарей каждый. Всего 8 аккумуляторов.
В дополнение к нагрузке потребителя необходимо добавить нагрузку, учитывающую подзарядку батарей. Она составляет 10% суммарной мощности аккумуляторного модуля (8*225*12) = 21600 Втч*10% = 216 Втч. Суммарная среднесуточное потребление будет составлять — 6500+216 = 6716 Втч.
Для обеспечения системы энергией солнечная батарея должна за время освещенности (T =5,5 часов) выработать среднесуточную потребность в электроэнергии (6716 Втч). Следовательно, блок из солнечных модулей (с выходным напряжением 24 В и мощностью 200 Вт каждый) должен состоять из 6 модулей (6716/5,5*200 = 6,10).
Вывод
Для энергообеспечения потребителя с активной мощностью 1100 Вт требуется 6 модулей солнечных элементов с выходными параметрами: Wmax=200 Вт и Uраб=24 В.
Комментариев нет:
Отправить комментарий